If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29x^2-14x-16=0
a = 29; b = -14; c = -16;
Δ = b2-4ac
Δ = -142-4·29·(-16)
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{57}}{2*29}=\frac{14-6\sqrt{57}}{58} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{57}}{2*29}=\frac{14+6\sqrt{57}}{58} $
| r^2+3r=2=0 | | 40x-160=440 | | 1/2+3y=1 | | X=y=4 | | 3x-7=120 | | 3m=1/4 | | 2x−7=−2x+1 | | 2(x-4)+7=1 | | 20(2x−8)=440 | | 11x/7+4=6 | | 6x+5=4x+45=360 | | 7/5+3m/2=35/6 | | 6(7+11p)=-18+6p | | 3.5+10m=8.43 | | 159=32-y | | 4(3t+4)-20=17+5t | | 2+1/6x=12 | | 8x-16=6x+74 | | y-3.18=7.12 | | 892=k+40 | | -162=s-186 | | 13x-11+4x+1+90=180 | | 7x+7.87=4x+13 | | -2g=-900 | | 16+10=c | | 60=2q | | 2x-9+(x+41)=180 | | t-3.7=1.7 | | 7+7x=11+6x | | 4x8=-2-2+5x | | 5-4x=4x+1= | | S=-12x+229 |